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1. A servo-system is considered which is described by a linear differ- 

ential equation L,(y) = f(t) of order n. In regard to the given external 

force f(t) it is assumed only that it belongs to the class F of p-times 

differentiable functions such that ( f’P’(t)l 6 Mp. The restriction of 

boundedness in modulus may also be imposed on other derivatives of f(t) 
and on the function f(t) itself. 

As an indicator of the quality of the servo we shall use the modulus 

(absolute value) of the difference y(t) - f(t) on the interval [ 0, T 1 e 

Sometimes it is possible to measure the values of the first k deriva- 

tives of the function f(t). 

It is assumed that the high-frequency noises and interferences have 

been filtered out when the function f(t) enters the servo-system. In 

this case, in order to improve the quality of work of the servo, one can 

feed into the system, together with f(t), also a linear combination 

Cl (t) f’ (4 + cz (t) f” (t) + t . + cj$. (Qf(“) (t) 

where the ci( t) belong to the class of Ai-functions. The classes of Ai- 

functions are determined by technical considerations. 

Thus, the described system has the form 

-f&(Y) = UOY 
(n) 

+ UlY tn-o + . + any = f (t) + 

4 Cl (t) f (t) + ca (t) f" (t) + Ck (4 f’“’ (t) (1.1) 

f (t) E F, ci (t) ~4, (i = 1, . . ., k), t E LO, Tl (1.2) 

)( (0) = i (0) = = y@-‘1 (0) = 0, f (0) = { (0) = /(O--1) (0) = 0 (1.3) 
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Its solution is 

Y/G = Y(Lf(r)*cW) (1.4) 

where c(t) is a vector function, with coordinates cl(t), e *. , ck(t), and 
can be treated as a functional. 

Let us now formulate the problem under consideration. It is rewired 
to find such functions cift) (i = 1, . . . , k) for which we have 

or 

E = mjn yx / Y (t, f, c) - f (t) 1 (1.5) 
I. 

I = rnin r;lax 1 Y (T, f, c) - f (T) / (W 

Here t, c(t), and f(t) are chosen from (1.2); one deals here with 
absolute maxima and minima. In general I is less than E. Therefore, it 
is sometimes necessary to create a system which realizes (1.6) and not 
(1.5). We note that the measuring of the derivative functions of f(t) in- 
volves technical difficulties, and these difficulties increase with the 
order of the derivatives. It is, therefore, desirable to obtain accept- 
able values of E or I with the aid of the smallest possible number of 
derivatives of f(t)m This can be accomplished to a certain extent through 
the enlargement of the classes Ai within, of course, certain technical 
1 imitations. 

Similar problems arise in the creation of systems which axe invariant 
relative to disturbances on a finite time interval, or at a fixed instant 
of time. 

In the next sections we shall consider the problems stated above. 
together with certain other ones for the classes Ai and F. 

2. In this section we shall assume that 

ci tt) = ciY , I ‘i I <nip (i = 1 . . ., k), If(P) 0) 16 J!f P' t E LO, Tl (2.1) 

Taking into account the first equation of (1.3), we can express the 
solution of Equation (1.1) in the form 

y (t) z Y (t, f, c) = SK (t - z) ( f (z) + i #) (z) ) dz (2.2) 

0 
i-_l 

From the second group of equations in (1.3) we obtain 

j(i) (z) zzz - j(P) (q s (t - up--i--1 du 

(p - i - I)! 
(i = 0, 1, . . ., l), 1 = min (k, p - 1) (2.3) 

0 
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Substituting (2.3) into (2.2)) and changing 

in the repeated integrals obtained, we find 
the limits of integration 

Here 

Y (t) - i (4 = \ [ Ko (t - t).f z] CiKi (t - 7) j f(P) (r) dt 

0 i&l 

1 . Ko (t-z)= ! K(t-u)(u-p-l du_ 

+ (P--j! 
(1 - q-1 
(p- 1) ! 

1 

’ Ki (t - t) = s K (t - u) (u - ~)~-‘--l 
A du 

(p - i - I)! 
(i = I,..., I) 

0 

If k = p, then K,( t - 7) = K( t - 7 ). Since f’p’ (7) satisfies (2.1) we 

have [ 1 I 

_A (c, t) = m:x 1 Y (t, j, c,) - j (t) 1 = M, i j Ko (t - t) + i ciKi (t - z) 1 (1-c (2.4) 

0 
i-=1 

It follows from this that A(c, t2) > A(c, tl) when t2 > tl, and hence 

T k 
.4* (c) - max A (c, t) = M, ’ 

t ii 
Ko (T - .t) + z] ciKi (T - t) dT 

c 
il i -1 

Thus, ,? = I in the given case, and in order to find the cl. Q e * , ck 
for which E is realized, one must minimize the expression 

T 

1 1 K (2” - T) + i ciKi (T - z) / dz z 5’ 1~ (t) 1 dz 

0 i-l 0 

The quantity E can be attained either at interior points of the k- 
dimensional parallelepiped V in the space with coordinates cI, . . . . Ck 

determined by the relations (2.1). or at points belonging to its bound- 

ary. A necessary condition for the existence of a minimum inside the 

region V is given by the equations 

aA* aA* aA* () 

_=_zz~~.= .-= 

as acz ac, 
(2.5) 

One can show that 

Ki (T - z) sign Ko (T - t) + i cjKj (T - z) 
j=l 

I 
dz (2.6) 

0 
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Thus, in order that (1.5) may be realized at an interior point 

C(CI, . . . . ck) of the parallelepiped V, it is necessary that the follow- 

ing equations in the unknowns cl, ,.., ck be satisfied: 

T Is ) 

c 
K, (T--t) sign 

[ 
Ko (7’ - z) + 2 cjKj (7’ - z) dz = 0 

.’ 
j=l 

I 
(i = 1, . . ., k) (2.7) 

0 

If the point c is located on the boundary Vi of the parallelepiped 

V where the coordinates with the indices iI, . . . . id take on their limit- 

ing values, then one has to cross out in the system (2.7) the equations 

with the corresponding indices, and in the remaining equations one must 

write in place of c. 
‘1) ..” 

cid their values on this boundary. The con- 

dition (1.5) may be attained on any one of the vertices of V. Since in 

the problem under consideration k cannot be large, the computation of ak 

values of A*(c) can be performed with the aid of a digital computing 

machine. 

3. Let us consider the equation 

It is required to find c(t) such that (1.6) may be realized. Repre- 

senting the solution of Equation (3.1) in integral form, and making a 
few transformations similar to those performed in Section 2, we obtain 

T 

Y (T, f, cl - f 0”) = .[Ko (7’ - Z) + c (T) II- (T - z)l f’ (T) dz 

0 

T 

fro (7’ - T) = \ K (T - T) dz - 1 
Q. 

From this it follows immediately 

It is obvious that for the minimizing of A(c) it is necessary and 

sufficient to minimize the value of the integrand function for any value 

of r from [ 0, T 1. Hence, the c(t) for which I is realized must have the 

form 

c (r) = --- I/L sign Ko(T-7) 
K (2’ -T) 

for ‘-!5!(T - ‘) > ,,I 
K (T - t) 
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If the first inequality is satisfied for every r E [O, 7’1, then 

I = 0, i.e. for all f(t) satisfying (3. l), the difference Y(T, f, c) - 

f(T) = 0 at the instant of time T. 

4. Let 

L ($/) y= j (t) f i ci (1) f”’ (t), / p (t) / < 'II, (4.1) 

i=l 

Ci (t) = Cij when t E it,, tj+,), (/ -= 0, ., r), to = 0, t,+l = T, ) Cijj < mj (4.2) 

It is required to find ci(t) for which I is realized. We shall show 

that this problem can be reduced to the one considered in Section 2. 

Making use of (4.1) and (4.2), one can obtain 

Y (T, f, c) -j (7’) == i 

li+1 
’ 

i\ 
Ii (‘1’ - .t) f (t) $ 

j-:” ‘I j L 

We note that 

‘i+1 
I< (I’ _ ,$ fci) (r) dr = ’ \ K,j (u) j(l’) ((0 dtt, (i = 1, , . ., I), 1 = min (k. p-~1 

0 

Here 

‘j>tl 
Kij (~1 = \ g - .t) CT - u)p-l-l 

i=j 
(p-i-l)! 

& when u E [O, tj] 

'j+1 

Kij (u) = \ 
K(T-r)(z-u)"-2-* dr when u e(tj, tj+l ] 

i 
(p--i-_-j! 

Kij (u)=O when (L ~(t~+i, T] 

Let us set 
T 
. 

Ko (4= \ 
K(l’-T)(z-u)“-l dz_ (T - .y-1 

A 
w-l)! (P - I)! 

and if k = p, then 

lirj (a) = K (2’ - U) whenu E [tj, tj+,] 

Ii,,l (il) = 0 when ZL e]O, T]\[tj, tj+ll 
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Then 

The problem is thus reduced to the one treated in Section 2. In the 
servo-systems there frequently arises the case when k= p= 1. analyses of I 

In this case 

T 

. A (c) = MI 
\ 
0” 

j 

r ’ j+r 
Ko (2~) + i CljK,j (ze) du = Ml 2 

i 
I Ko (u) + Clj K (T -- ZL) / du 

j=o j-o t. 
1 

Here the ~1: must be chosen so as to minimize 

‘j+1 
\ 1 Ko (u) + cliK (T - zt) / die 

If the interval [ tj, tj+ 1 1 is such that in it K,(u) and K(T - u) 
are monotone, then this problem can be solved quite simply. 

5. The actual evaluation of the derivatives of the function f(t) is 
connected with considerable difficulties. Usually, when the differentia- 
tion is performed with the aid of electric systems, the output is a 
function m(t) satisfying the equation 

For small values of the constant time T, it is assumed that nt(tf = 
f’(t). From (5.1) it follows that 

IPZ (I) = I” (I - z) 1’ (z) & (5.2) 

0 

In Place of f’< tf we obtain Expression (5.2) for the problem con- 
sidered in Section 4. We have the equation 

t 
I, (y) :- f (t) + c (t) s p (t- ‘c) i’ iz) 0’7 

Thus 
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Interchanging the limits of integration of the repeated integrals, we 

obtain 

liS1 T 

s K (T - z) ip (z - u) f’(u) dudz= \ Kj (u) f’ (u) du 

‘i 0 Ii 

Here 
'j-t1 

Kj (u) = 
\ 

K (7’ - T) p (T - u) dt when u E [O, tjl 

;j 

'i+1 

Kj (u)= 
\ 

K (2’ - z) p (z - u) dz when u E [ tj, tiSlj 
._ 
u 

h’i (u) = 0 when u e(tjtl, T] 

Therefore 
T 

A(c) = rn,ax / Y (T, f, c) - f (T) 1 = MI ’ 
!I 

KO (u) -I- i cjKj (u) du 

0 j=o 
T 

Ko (u) = 
s 

K (T - u) du - 1 

U 

From this it follows that one can state the problem on the minimiza- 

tion of ( Y(T, f, c) - f(T) ( 1 a so with the aid of signals which reproduce 

the derivatives of f(T) only approximately. 

6. Let us consider the following problem. It is required to find a 

function c(t) for which I is realized in the case that 

L (Y) = c (t) f (47 I c (t) I d Jf, I f’ (t) I < ,nlY t E [O, Tl 

Just as in the preceding SeCtiOnS, we write 

T T 

I Y (T, f, 4 - f (T) I = 
IS 

[K1(z)----1 f’(T)dz 7 K1 (z) = ’ K (II’ - u) c (u) du 
s 

0 + 

Therefore 

1 = min A (c) = min 1n1 / KI (z) - 1 I df 
c c T 

n 

We note that K1(Tj = 0 for any bounded function c(u). From the form 

of the function K,(r) it follows at once that if min A(c) is to be 
attained, then it is necessary and sufficient that 1 K,(r 1 - 11 be as 

small as possible for any arbitrary value of r from [ 0, T 1. Hence, 1 
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where 

c (t) = Cl for tE [O, tr], c (t) = c:: for tE [t1, T] j f' (t) j ,< tu1 

From the relations obtained in Section 4, it follows that 

A (c, t) = ml [S ’ I- cos (T - Z) -t_ cl sin (T - X) i dt + 

0 
T 

L / 1 ! -- cos (7' - I$ f cs sin (I’ - z) 1 dt = A1 (cl, T) + A2 (c?, T) 

11 

Let tI = n/4, T = o-/2. In order to find cl and c2 for which I is 

realized, we set the derivatives of the functions Al(c1n/2) and A2(cp/2) 

equal to zero. It is not difficult to show that 

AI+, $-) = U for cl = 0.377, AZ’ = 0 for c2 = I.64 

These are the only extremal values of these functions. At them I is 

realized, and I = 0.49 ml. 

Note 7.1. We call attention to the fact that all the above-considered 

methods for finding I apply also to the case when L(y) has variable co- 

efficients. 

Note 7.2. The results obtained can be generalized to the case when 

L(y) is a linear difference operator. This can be done with a trans- 

formation given in [ 2 1 . 
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